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ABSTRACT

We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element

problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions

with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact

finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping

Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding

continuation strategy for problems with weak shocks, is robust and economical for this class of

mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several

parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density,

subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on

numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory

parallel computer.
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1 Introduction

In the past few years domain decomposition methods for linear partial differential equations,

including overlapping Schwarz methods [9, 12, 13, 37], have graduated from theory into

practice in many applications [17, 27, 28, 34]. In this paper, we study several aspects of the

parallel implementation of a Krylov-Schwarz domain decomposition algorithm for the finite

element solution of the nonlinear full potential equation of aerodynamics, extending our

model studies of linear convection-diffusion problems in [5] and of linear aerodynamic design

optimization problems in [33]. Newton-Krylov methods [2, 3, 14, 15, 39] are potentially well

suited and increasingly popular for the implicit solution of nonlinear problems whenever it

is expensive to compute or store a true Jacobian. We employ a combined algorithm, called

Newton-Krylov-Schwarz, and focus on the interplay of the three nested components of the

algorithm, since the amount of work done in each component affects and is affected by the
work done in the others.

Newton-Krylov-Schwarz is a general purpose parallel solver for nonlinear partial differ-

ential equations and has been applied to complex multicomponent systems of compressible

and reacting flows in, e.g., [6, 7, 29]. This paper is concerned with the simpler scalar problem

of the full potential equation, which describes inviscid, irrotational, isentropic compressible

flow. Though the full potential model is highly idealized, it remains the model of choice

of external aerodynamic designers to date, because codes based thereupon offer reasonable

turnaround times and in many cases high accuracy compared to state-of-the-art Navier-

Stokes solvers. Though derived under the condition of isentropy, the full potential model

remains useful in flows with weak shocks, with pre-shock Mach numbers of about 1.2 or

less. It can also be extended by boundary layer patching to incorporate viscous effects, by

a branch cut to accommodate lift, and by source terms to simulate powered engines. In

engineering practice, accurately modeling such nonideal effects in complex geometries ac-

counts for almost all of the lines of code, but the solution of the resulting discrete equations

accounts for the majority of the execution time. The lower per-cell storage and computa-

tional requirements of the potential model allow the use of grids dense enough to achieve low

truncation error levels for complex geometries. The full potential equation also avoids the

spurious entropy generation near stagnation often associated with Euler and Navier-Stokes

codes for industrial complex geometries of interest. We justify the simply coded examples

in this paper by our focus on a solution algorithm that should not require any changes other

than greater irregularity in its sparse data structures to be useful in more practical settings.

With Newton's method as the outer iteration, a highly nonsymmetric and/or indefinite

large, sparse Jacobian equation needs to be solved at every iteration to a certain accu-

racy, which is often progressively tightened in response to a falling nonlinear residual norm.

The most popular family of preconditioners for large sparse Jacobians on structured or un-

structured grids, incomplete factorization, is difficult to parallelize efficiently flop-for-flop in

its global form. In our approach, the ILU-precondRioner for the Newton correction equa-

tions is replaced by a multi-level overlapping Schwarz preconditioner. The latter is not

only scalably parallelizable (up to available granularities), but also possesses an asymptoti-

cally optimal mesh- and granularity-independent convergence rate for eUiptically dominated

problems. Our two-level overlapping additive Schwarz algorithm uses a non-nested coarse

space. Subdomain granularity, quality of subdomain solves, coarse grid density, strategy for



coarsegrid solution,andinneriterationterminationcriteriaareimportantfactorsin overall
performance.Wereport numericalexperimentsonan IBM SP2with up to 32processors.

The outlineof this paperis asfollows. In §2,webriefly derivethe form of the full
potential equationthat servesasthe point of departurefor the numerics.The finite ele-
mentdiscretizationandthe constructionof an approximateJacobianfor thefull potential
equationarediscussedin §3. §4is devotedto the descriptionof the basiccomponentsof
the NKS algorithm.Severalparallelimplementationissuesareexplainedin §5.Numerical
resultsaresummarizedin §6. Finally, weoffersomegeneralremarkson the useof NKS
algorithmsin §7.

2 The full potential problem

For completeness, we summarize the derivation and assumptions of the full potential equa-

tion of aerodynamics. For a more thorough development, see [23].

The equation of mass conservation in a steady state fluid flow can be written in diver-

gence form,

V. (pv) = O, (1)

where v = (vl, v2) T is the velocity and p is the local density, respectively. We assume that

the flow is irrotational, which implies that there exists a velocity potential ¢ such that

v = V¢. Furthermore, the relation _ = const, holds for isentropic flow of a perfect gas.
With the above assumptions, we can integrate the inviscid momentum equations and obtain

BernouUi's equation
q2 a 2
-- + -- = const., (2)
2 7--1

where q = (v_ + v_) 1/2 = IIV¢112is the local flow speed. The sound speed a is defined by

a2 = dp/dp, where p is the local static pressure. By means of the above relations, the five

unknown fields vl, v2, p, a, and p can be eliminated in favor of a single unknown function _,

which solves the full potential equation:

V-(p(¢)V¢) = 0. (3)

Two forms of this equation are standard in the literature, depending upon whether the

density is referenced to a uniform freestream (at c¢) or to a stagnation point condition. We
derive the freestream version as follows. From BernouUi's equation (2).

2
q2 a 2 q2 a_

-_-+ - +-- (4)7-1 2 7-1'

we have that

v(q )a2 (7-1)(q_-q2) M 2 1- (5)
a--_= 1+ 2a2 = 1+ _ ,

where M = q/a is the Mach number, and Moo is the freestream Mach number. From the

definition of the sound speed and the pressure-density relation, we obtain

a 2 d(cp "y)-- -- cTp _-1 , (6)
dp



p )_-1 Therefore,or equivalently, (_.__)2 = (7-£-_- •

7_1M2(P(¢) = Poo 1 + --____,1 (7)

Observe that while the density is positive in regions of validity, (3) may be locally hyperbolic.

Equation (3) requires boundary conditions. In this paper, we consider only subsonic

farfield boundaries. Since our emphasis is on the performance of the Schwarz precondi-

tioning, we study a symmetric nontifting case, thus avoiding consideration of the Kutta-

Joukowsky boundary condition. To keep the geometry of the domain trivial, we use a

classical transpiration boundary condition on a slit to represent the airfoil. Transpiration

refers to a continuously parameterized injection and removal of fluid along a portion of

the boundary to create a recirculation pocket with a bounding streamline attached to the

domain boundary at both ends, over which the flow of interest passes inviscidly. Transpira-

tion is implemented as an inhomogeneous Neumann condition. A theoretical discussion of

the use of transpiration boundary conditions to model displaced surfaces can be found in

[25]. For the farfield boundary condition, we use Dirichlet values of the potential upstream.

More sophisticated farfield conditions are possible, and are required in the case of a lifting

airfoil, but these conditions are sufficient for excellent agreement of our numerical results

with standard nonlifting solutions.

3 Finite element approximation

Following Boeing's TRANAIR code [42], we employ a finite element formulation of the

two-dimensional full potential equation using bilinear elements. The existence, uniqueness,

and regularity of the solution are not central to this paper, but have been discussed in the

papers [31, 35] and references therein. Related finite element approaches for this class of

full potential equations can also be found in [1, 16]. A finite volume scheme was given in

[30] and a mortar element-based domain decomposition scheme was recently parallelized to

high efficiency in [26].

3.1 Basic finite element scheme

The finite element problem is formulated in terms of the weak form

a(¢, v) = f_ p(¢)V¢
Vv dfi.

We use bilinear elements on a rectangular partition off_ denoted by f_h = {ri, i = 1,..., Mh}.

Let {¢i(x, y)} be the usual nodal basis functions. The numerical solution we seek has the
form

¢(x,Y) = Z ¢i¢i(x, Y),

and satisfies the following nonlinear algebraic equations

Mh
t"

/ VCVvda = O, (8)
i=1

dr



for all v in the test function space. Here (x,c.,y_) is the center point of the rectangle r_.

To simplify and speed up numerical integration, we introduce certain approximations when

dealing with some of the nonLinear forms. The way that we treat the local nonlinear

numerical integration in (8) is like that in [42]. Let us define a system of nonlinear equations

( FI(OI'''''oN'p(OI'''''ON)) )
F(¢) = : = 0, (9)

FN(OI,'", ON,p(O1,"', ON))

where
t"

F_(¢,p(O)) = _ p(O(x_,y_))[ VOV¢idl2, (10)
rEf_h

JT

and (x_, y_) is the center point of the element v. We construct the Jacobian matrix J = {Jij}

of the nonlinear system F = 0, approximately, as follows. For each pair of indices i,j, we

define

0o----7= _ p(¢)(v_. V¢,lda +
rEflh

where s = HVOII_. To simplify the numerical integration, the exact Jacobian value above

is replaced by

E p(o(x_, y_))_(vCj •V,_)d_ +J_j
rE_h

(11)

E _ (tlV¢ll_)(vo-vc;)da,
rEflh

where the value of dp/ds is calculated at the element center point. We remark here that,

because the density function p is not a constant, the Jacobian matrix is generally non-
symmetric and possibly indefinite. The explicit construction of the Jacobian matrix is not

necessary if we use an unpreconditioned Newton-Krylov method; however, to implement a

Schwarz preconditioner, explicit approximation of the Jacobian matrix is needed in each

subdomain.

3.2 Density upwinding schemes

For subsonic problems, the above mentioned finite element method is sufficient; however,

for transonic cases upwinding has to be introduced in the density calculation in order to

capture the weak shock in the solution. The proper use of an upwinding scheme is essential

both to the success of the overall approach in finding the correct location and strength of

the shock and to the convergence, or the fast convergence, of the inexact Newton's method.

As mentioned earlier, density p is assumed to be a constant in each element, and this

constant is ordinarily determined by the four values of • at the corners of the element,
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Figure 1: The finite element stencil. @ is stored at the cell vertices and p at the cell centers.

through (7). Following [24, 42], if an element is determined to be supersonic, or nearly so,

its density value is replaced by

t5 = p -/tV. V_p, (12)

where V isthe normalized element velocityand V_p isan upwind undivided difference.

For example, with reference to Fig. 1, if V = (Vx, Vy) and V=, V_ > 0 in the element marked

with Pl, then

= pl - - p6) + V (pl - ps)).

Here p is the element switching function,

# = Uomax{O, 1- M2/M_}, (13)

where M is the element Mach number, Mc is a pre-selected cutoff Mach number chosen to

introduce dissipation just below Mach 1.0, and Vo is a constant usually set to something

between 1.0 and 3.0 to increase the amount dissipation in the supersonic elements. Pa-

rameters Mc and u0 may be varied to advantage between Newton steps in problems with

shocks. Roughly speaking, M= controls the spatial extent of the upwinding; as it drops

below 1.0 upwinding is triggered in a greater number of subsonic (but nearly sonic) cells.

Mc, uo, and V together control the amount of the upwinding in a triggered cell. A low

Mc and a high u0 stabilize convergence but diffuse the shock. As iterations progress, Mc

should approach 1.0 and u0 should be decreased to steepen up a shock whose location and

strength has converged. A well resolved shock will take many Newton steps to settle on its

correct location, whereas a diffuse shock centers quickly on this location. A carefully chosen

sequence of Mc and u0 can considerably accelerate the Newton's convergence; more details

on this "viscosity damping" can be found in [41]. Another way to control the convergence

of Newton's method is through the use of iterated maximization of the switching function,

as described below and apparently first discussed in [22].

For each element, # as defined by (13) is called the zeroth level switching function and

is denoted more precisely as p(0). In Fig. 1, there is a nonzero #!o) for each element marked

with pi. The first level switching function for the element marked with Pl is defined as

#_') = max{#_°), ...,p(9°)},

5



namely,#I a) is the maximum of the all the # values in its immediate neighborhood. A

(k + 1)-level switching function is defined recursively as the maximum of the neighboring

k-level p values.

Results for k = 2 are reported in §6. A rather tight Math cutoff is used, namely

/11c2 = 0.95, and we set u0 to 1.0.

We remark that large k results in greater discrete data dependency, or larger effective

stencil size, in both the nonlinear function and the Jacobian. For example, if k = 0, the

stencil contains at most 9 points (e.g., the nine mesh points immediately surrounding (i,j)

in Fig. 1). If k = 1, then some of the "×" points may join the stencil depending the

flow direction, and the stencil may contain as many as 16 points. The increase in the

stencil bandwidth does not cause much of a problem in the nonlinear function evaluation,

but would substantially increase the memory requirement of the Jacobian matrix, which

is constructed and stored for the Schwarz preconditioner at the beginning of each Newton

iteration. To keep the memory requirements small in practice, we do not calculate or store

the matrix elements introduced by using the iterated switching function. Our numerical

experiments show that this extra level of approximation of the Jacobian matrix does not, in

fact, appreciably reduce its power as a preconditioner. This is analogous to the practice in

[7] of using Jacobian blocks based on first-order upwinding to drive a second-order upwinded

residual to zero, in an inexact Newton iteration. Though not much discussed in the theory of

approximate Newton methods for systems arising from PDEs, such techniques are commonly

applied in stationary iterations in steady-state aerodynamics codes. Especially in three

space dimensions, using simplified upwinding in the Jacobian matrix dramatically reduces

cost at a small expense in convergence rate degradation.

4 Newton-Krylov-Schwarz algorithms

NKS is a family of general purpose algorithms for solving nonlinear boundary value prob-

lems of partial differential equations. In terms of software development, NKS has three

components that can be handled independently. However, to achieve reasonable overall

convergence, the three components have to be tuned simultaneously. We discuss these

components in turn.

4.1 The matrix-free Newton method

In this subsection, we briefly discuss the well known matrix-free inexact finite-difference

Newton algorithm, and the Eisenstat-Walker forcing functions [15]. Starting from an initial

guess ¢0, which is sufficiently close to the solution, a solution of the nonlinear system (9)

is sought by using an inexact Newton method: For some r/k E [0, 1) find sk that satisfies

liE(Ok) + J(Ok)skll _ rlk (14)

and set _k+l = ¢_k q- )lk3k, where ,_k E (0, 1) is determined by a line search procedure

[11]. In practice, the method is insensitive to the details of the method used to determine
$k- Much more important is nonlinear continuation in grid density, dissipation, and other

parameters. The iteration is continued until convergence, typically defined in terms of a

6



sufficientlysmall [[F((I)k)[].ThevectorSk is obtained by approximately solving the linear

Jacobian system

g ( 'hk )sk = - F( ¢k )

with a Krylov space iterative method. The action of Jacobian J on an arbitrary Krylov

vector w can be approximated by

1
J(_k)w ,,_ - (F(¢k + ew) - F('hk)).

Finite-differencing with e makes such matrix-free methods potentially more susceptible to

finite word-length effects than ordinary Krylov methods. Left preconditioning of the Jaco-

bian with an operator B -1 can be accommodated via

8 -1J(¢k)w _ --
E

where F(Ck) = B -1F(¢k) is stored once, and right preconditioning via

J(_k)B-iw _ 71 (e(((I)k + _B-lw)) - F(¢k)) • (15)

Right preconditioning is preferable when the focus is on comparing different preconditioners

in vitro, since the true linear residual norm that is measured as a by-product in Krylov

method GMRES (see next subsection) and used in the termination test is independent

of any right preconditioning. On the other hand, any left preconditioning changes this

by-product residual norm. For this very reason, left preconditioning may be preferable

when GMRES is applied in vivo as the solver for an inexact Newton method. When the

preconditioning B -1 is of high quality, the left-preconditioned residual serves as an estimate

of the error in the Newton update vector. This estimate can be employed in a termination

condition. In this paper, one of our emphases is assessing preconditioner quality, and we

report only right-preconditioned results.

The most expensive component of the algorithm is the solution of the linear system with

the Jacobian at each Newton iteration. As discussed in Eisenstat and Walker [15], when

(I)k is far from the solution, the local linear model used in deriving the Newton method may

disagree considerably with the nonlinear function itself, and it is unproductive to "over-

solve" these linear systems. We tested several stopping conditions, including those discussed

in [15], and found that the best choice for our problems, based on elapsed execution time for

a fixed relative nonlinear residual norm reduction, is simply to set _/k = 10-2[[F((I'k)l[2. In

fact, even the looser T/k = 10-1[]F(¢k)[]2 is sufficient for the first few Newton iterations, but

not much time is saved by switching dynamically among these two already loose criteria,

so we use the first throughout.

4.2 Krylov iterative methods

We use the GMRES method [36], to solve the linear system of algebraic equations

Px = b, (16)



whereP is the matrix appears in (15), and b is the negative of the nonlinear Newton

residual vector in (9). The method begins with an initial approximate solution x0 E R n and
an initial residual ro = b- Pxo. At the mth iteration, a correction vector zm is computed

in the Krylov subspace

ICm(ro) = span{r0, Pr0,-.-,Pm-lro}

that minimizes the residual, minz_:,_(r0)lib - P(xo + z)[[2. The mth iterate is thus xm =

x0 + zm. To fit the available memory, one is sometimes forced to use the k-step restarted

GMRES method [36]. However, in this case neither an optimal convergence property nor

even convergence is guaranteed. In our experiments, we do not need to solve the linear

systems very accurately; i.e., 77= 10 -2 in

Jib- Pzmllo _<nJIToH2

is sufficient to capture an accurate solution to the nonlinear problem, in both subsonic and

transonic cases. We do observe that, for certain maximum Krylov subspace dimensions

(for example 30, in a problem with approximately 104 times as many discrete unknowns)

and certain Mach numbers (M_ = 0.8), the restarted GMRES can never reduce the initial

residual below 10 -5 . In other words, there is no linear convergence. It is further noticed

in such cases that the residual norm measured as a by-product in GMRES is no longer the

same as, or even close to, the true residual norm except at the restarting points, where it

is freshly updated. 4 A loose linear convergence tolerance avoids this problem by returning

to the Newton method with a step that is far from exact. In the delicate balance between

few nearly exact Newton steps with expensive inner linear solutions and many inexact

Newton steps with bounded-cost inner linear solutions, we find the bottom line of overall

execution time best served by bounding the inner linear work. This approach is also found

most effective in the context of inviscid aerodynamics based on the primitive variable Euler

equations in [7]. It deprives Newton's method of its asymptotic quadratic convergence, but

provides steep linear convergence.

4.3 Two-level overlapping Schwarz preconditioners with non-nested coarse

spaces

In this subsection, we discuss a two-level overlapping Schwarz preconditioner with inexact

subdomain solvers and non-nested coarse grid. Let Q be the domain of the full potential

equation. We first partition the domain into nonoverlapping substructures Qi, i = 1,..., N.

To obtain an overlapping decomposition of the domain, we extend each subregion _i to a

larger region Q'i, i.e., _i C Q'i. Only simple box decomposition is considered in this paper:

all the subdomains Qi and _t'i are rectangular and are made up of integral numbers of fine

mesh cells. For simplicity, we also assume that all substructures are of the same size. More
J I $

precisely, the size of fli, i = 1,--., N, is Hz × Hy and the size of Qi is H x × Hy, where the

4We believe, after Saad (personal communication), that this may be due to a lack of floating point

commutativity in the product that expresses z,, in GMRES, namely zm = PVmy, where 1_ is a Gram-

Schmidt basis for K:,n and y is a coefficient vector of dimension m that satisfies a related least squares

problem (see [36]). The effect seems related to drastic variations in the magnitude of successive elements of

y.



H' are chosen so as to ensure a discrete overlap, denoted by ovlp, which is uniform in the

number of fine grid cells all around the perimeter, i.e.,

t

ovlp = (H' x - Hx)12 =(tIy - Hv)/2 ,

for interior subdomains. For boundary subdomains, we simply cut off the part that is

outside ft. Fig. 3, which appears later with the definition of numerical boundary conditions,

illustrates a decomposition with an overlap of three fine mesh cells.

On each extended subdomain f/i, we construct a so-called subdomain preconditioner

B_ = {Jij}, where the node indexed by (i,j) belongs to the interior of f_'i. Jij is calculated

by using the formula (11). The density upwinding discussed earlier is used in the transonic

cases. Homogeneous Dirichlet BCs are used on the internal subdomain boundary 0f/' i fq f_,

and the appropriate external boundary condition is used on the physical boundary if present.

We next discuss the construction of the coarse grid and the coarse grid preconditioner.

The coarse grid is built independently of the fine mesh. We cover f_ with another uniform

rectangular mesh f/H = {r/H, / = 1,..., MH}, and at each coarse node we introduce a

bilinear finite element basis function koi(z, y). The set of coarse nodes is not generally a

subset of the fine mesh nodes. In other words, the discrete subspaces defined by the two

meshes are generally non-nested [4]. Both coarse and fine grids cover the entire fl, and

they share the same boundary, which they both resolve exactly because of its prescribed

simplicity. (The case of a multi-level Schwarz preconditioner for geometrically complex

grids, in which only the finest level exactly resolves the boundary geometry, is considered

in [10].) The coarse grid preconditioning matrix B0 is defined by using formula (11) with

respect to the basis functions {_}. The coarse grid matrix arises from an independent

discretization, not an agglomeration of fine grid matrix. No upwinding is used on the

coarse grid even in the transonic case. Empirically, the convergence may be slowed down

if the density upwinding is used at the coarse grid, since a poorly located shock may be

"resolved" and added to the fine grid solution. We do not fully understand the reason for

this slowdown, and believe we are not alone in regarding the choice of a coarse grid operator

for mixed elliptic-hyperbolic problems as one of the most important outstanding questions

in multilevel preconditioning.
The interaction of the coarse and the subdomain preconditioners is through the inter-

polation and restriction operations. We define the coarse-to-fine interpolation matrix, I h,

as follows. Let I__t = {lij} be an Mh × MH matrix, and

l_,_= cj(zi),

where xi is ith fine mesh node. The fine-to-coarse restriction matrix is defined as (Ih) T,

the transpose of I h. The additive Schwarz preconditioner can be written as

B -1 = IhBol(Ih) T + I1B{I(I1) T +... + INBNI(IN) T. (17)

Let n'i be the total number of nodes in fl'i, then I/ is an Mh × n'i extension matrix that

extends each vector defined on f_ to a vector defined on the entire fine mesh by padding

an n: × n'i identity matrix with zero rows.

Various inexact additive Schwarz preconditioners can be constructed by replacing the

matrices Bi, i > 0, in (17) with convenient and inexpensive to compute matrices, such as



thoseobtainedby using local incomplete factorizations. The coarse grid operator/70 1 is

always applied exactly. Some detailed comparisons of (17) with global ILU preconditioners

on rather general scalar problems can be found in [5]. Experience with transonic potential

problems in the Boeing TRANAIR code can be found in [40].

5 Parallel implementation issues

We implemented the family of NKS algorithms on the IBM SP2. The top-level message-

passing calls are implemented through the Chameleon Package of Gropp and Smith [19],
which uses the IBM MPL library.

The code is written in a hostless manner. Each processor is assigned one subdomain,

and the information pertaining to the interior of the subdomain is uniquely owned by that

processor and is not available to any other processors except by message passing. Following

the parallel complexity study in [18], the low-storage coarse mesh information is duplicated

in each of the processors. On each processor, we store the subvectors and subblocks of

the Jacobian matrix associated with an extended subdomain. For the coarse-grid precondi-

tioner, the right-hand vector is built by a parallel fine-to-coarse restriction operation. Once

the right-hand vector is obtained the coarse linear system is solved simultaneously on all

of the processors. The solution is then added to the local subdomain solutions by using a

parallel coarse-to-fine interpolation operation. In all the experiments that we have done,

the size of the coarse linear system is so small that the CPU time spent on it is negligible.

fti
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Figure 2: Illustration of two-way buffer copies required at each nearest-neighbor boundary.

For each action of the Schwarz preconditioner on a vector the data needed in the extended

regions are copied from the interior of neighboring subdomains. The amount of data moved

for each processor is proportional to the area of overlap.

The multiplication of a vector with the Schwarz preconditioner is the most expensive

operation in terms of memory consumption and execution time. At the beginning of each

nonlinear iteration, the (I)-dependent local and coarse grid preconditioning matrices are

computed explicitly, and stored in Compressed Sparse Row (CSR) format. According to

the desired type of local solver (see below), the matrices are factored, and the upper and

lower triangular parts stored. The matrices for the interpolation and restriction between

the coarse and fine meshes are independent of 4, and are calculated in a preprocessing
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step. After the solutionof eachsubproblemis obtained,thoseportionsthat fie within
the overlappingregions(boundedby the dashedboxesin Fig. 2) aresentto neighboring
subdomainsto completethe summationdefinedin (17). The length of the messageis
proportionalto the areaof overlap.

p

1"6

F5
i

I

I

, fi

fii

. _ .

F1 F2 F3

F4

X

Figure 3: Domain _ with an exaggerated NACA 0012 curve at the bottom. The dashed fines

indicate the partition of the domain into nonoverlapping substructures, and the dotted fines

indicate the overlapping subdomains. The incomplete fine mesh of solid fines illustrates an

overlap of 3 subintervals. F6 is the inflow, F5 the freestream, and i"4 the outflow boundary.

6 Numerical results

In this section, we report some numerical results obtained on the IBM SP2 with up to 32

processors for both subsonic and transonic flows. The SP2 offers subsets of dedicated nodes

through a batch scheduler. Other jobs on different dedicated subsets share the communica-

tion network, but processor allocation tends to concentrate intercommunicating processors

onto independent subnetworks. We report five performance metrics for each run: (1) the

total number of Newton iterations; (2) the total number of GMRES iterations; (3) the total

execution time (including the pre-processing step such as the decomposition of the mesh, the

calculation of message lengths and the allocation of sparse matrices, all communication and

synchronization overhead, etc.), which is an average over all processors; (4) the megaflop

rate, which is a sum of the rates on each processor; and (5) the total communication time,

which is an average over all processors (isolated out of (3)). Metrics (1) and (2) are of

interest in understanding convergence rates, while (3), (4) and (5) are useful in assessing

bottom-line performance and modeling scalability.
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The computercode was first developed on a network of workstations, and then moved

to the IBM SP2, changing only a UNIX makefile. To obtain the best performance of the

code, in terms of either the elapsed time or the megaflop rate, is not the main purpose of

this paper. We provide the execution time and megafiop information for all the calculations

for completeness. Though compiler optimization was used, the listed megaflop rates are an

order of magnitude below their peak values. Greater attention to cacheing is undoubtedly

required to improve this situation, and will potentially be simplified when addressed in the

future by the domain-oriented structure of the software.

6.1 Test problem and parameter selection

is a unit-aspect ratio square partitioned into a uniform rectangular meshes up to 512 × 512

in size. Let q¢¢, the farfield flow speed, be normalized to 1. In Fig. 3, let _ = fx q_dx.

We assume the following boundary conditions.

* On the farfield boundaries F4, F5 and F6, we assume (I) = (I)_.

• On F2,
0¢

0---y=

where n = (nx, ny) is the unit outward normal, and where y = f(x) describes the

shape of airfoil for x E F2. Once the function f(x) is given, this condition becomes

- qoof'(x).
Oy

• On F1 and 1'3, we impose for symmetry the no penetration condition

0'I) 0q'
-- -- 0o

On Oy

The functional form used for the NACA0012 geometry [38] is

f(x) = 0.17814(v_- x) + 0.10128(x(1 - x)) - 0.10968x2(1 - x)+ 0.06090x3(1 - x),

for x E (0, 1). This unit interval is scaled to (1/3, 2/3) in the overall domain. The blunt

leading edge of the airfoil poses a technical problem for the transpiration boundary condi-

tion, since if(x) is undefined there, so we slightly modify the function f(x). The curve in

the interval [0, 0.047059] is replaced by a parabola with a matching function value at x = 0,

and matching function and first derivative values at x = 0.047059.

A number of parameters need to be specified in the NKS algorithms. The selection of

some parameters, such as the number of subdomains, is related to the granularity of the

architecture, not to the equation, itself. Altogether, we have

• Switching-function parameters, in the transonic case (§3.2). The level of maximization

of the switching function is set to 2, v0 is 1.0, and the cutoff Mach value is M[ = 0.95.

12



Finite differencingparameter,e (§4.1). We find that for the nondimensional scalar

full potential equation, the numerics are not very sensitive to E. We simply set it to

10-s, near the square root of the machine epsilon.

Newton convergence parameters (§4.1). The initial guess is a simple interpolation of

the farfield boundary condition. Nonlinear convergence is declared following a 10 -l°

relative reduction of the initial residual. The step size reduction ratio in the line
search is 0.5 and the termination tolerance is 10-4 .

Krylov convergence parameters (§4.2). The convergence tolerance for the linear iter-

ative solver at each Newton iteration _k = 10-2[[F(_k)[[2 • We restart GMRES at

every 30th iteration.

Number of subdomains, ns (§4.3). Since only the additive version of Schwarz is under

consideration, we always set that the number of subdomains is the same as the number

of processors, np, which varies from 8 (the minimum required to store the problem) to

32 (the maximum available within power-of-two configurations). (In a multiplicative

algorithm [37], we would set n to np times the number of colors.)

Overlapping size, ovlp (§4.3). In fact, there are two overlapping sizes, in x and y

directions. In this paper, we assume the same number of fine mesh cells, ovlp =

1,..., 5, are extended in both directions.

Coarse grid size (§4.3). This varies from no coarse grid (0 × 0) to a coarse grid with

a modest number of points in each subdomain (10 × 11). (The coarse grid cells are

square, but asymmetry in the employment of Neumann boundary conditions in the x

and y directions makes the total number of gridpoints off by one.)

Level of fill, k, in ILU (§4.3). According to our past experience with multilevel pre-

conditioning [5] and similar experience on a industrial-grad e transonic potential code

[33], relatively modest fill-in is optimal for small subdomains. Intuitively, little is

lost relative to the coupling already sacrificed at subdomain boundaries. However,

as the local memory keeps increasing on powerful modern parallel computers, such

as the IBM SP2, the size of the subdomain problems can be quite large. For large

subdomain problems, low level of fill-in is no longer as effective, k varies from 0 to 5

in our experiments, then jumps discontinuously to the full band in the case of exact
subdomain solves.

6.2 Observations- subsonic case

Our first test case corresponds to a subsonic problem with Mo¢ = 0.1. The linear systems

that arise fall within the elliptic theory for Schwarz [37]. It takes 6 Newton iterations to

reduce the initial nonlinear residual by a factor of 10 -1°. Because of the Krylov dimension

cut-off, the convergence is linear; see the left panel in Fig. 4. The top portion of Table 1

shows the convergence performance for a fixed-size problem of 512 x 512 uniform cells with an

increasing number of subdomains: 8, 16 and 32. The overlap size is fixed at 3h. The density

of the unnested uniform coarse grid varies from 0 × 0 to 10 × 11. Key observations from this
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Figure 4: For Mc¢ = 0.1, the left figure shows the history of the Newton residual, and the

right shows the (upper surface) Cp curve at convergence.

example are as follows: (1) Even a modest coarse grid makes a significant improvement in

an additive Schwarz preconditioner, especially when the number of subdomains is large. As

much as 40% of the execution time can be saved when adding a 2 × 3 coarse grid to a no coarse

grid preconditioner, for the 32-subdomain case. (2) A law of diminishing returns sets in at

roughly one point per subdomain. (3) When using 8 processors, the total communication

time is always less than 5% of the total computational time, however, it becomes as much

as 26% when using 32 processors. (This includes synchronization delays as well as the time

actually delivering the message packets from application process to application process.)

Table 2 shows the effects of the overlap size. For simplicity, we fix the coarse grid to 6 × 7

for all test cases. The overlap size is given here in absolute terms, i.e., the distance between

the boundary of the unextended subdomain and the extended subdomain, not relative to

the diameter of the subdomain. All the subproblems are solved with the exact Gaussian

elimination in sparse format. Since the fine mesh size is fixed, when using small number of

processors, such as np = 8, the single processor memory requirement is substantial. In this

case, increase the overlap size can indeed reduce the total number of GMRES iterations,

but the reduction of the total execution time is rather limited.

In Table 3, we present the results when the subproblems are solved with ILU(k) for

various levels of fill-in. The overlap size is 3h, and the coarse grid is 7 × 8. The conclusion

from the tests shown is that the larger the k, the faster the method becomes; see the boxed

numbers in Table 3. When using a small number of processors, like 8, the best execution

time is obtained with ILU(5); compare the upper portions of Tables 1, 2 and 3, However, if

the processor number is large, the optimal result can only be obtained by considering several

parameters: ovlp, k, the coarse mesh size, and perhaps others. We have not simultaneously

varied all relevant parameters to get the best results, but have presented controlled slices

through parameter space for insight.

Load balancing should not be a significant issue in the dedicated-processor subsonic case.

All processors have nearly the same computational load, except those which have to handle

the Neumann boundary conditions. This is no longer true for the transonic calculation,

when a shock resides in some of the subdomains. See §6.4.
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Figure 6: The left figure shows the convergence history of the Cp curves at M_ = 0.8. The

right figure shows the Mach contours of the final solution at M¢¢ = 0.8.

6.3 Observations -- transonic case

Figure 5 shows the convergence history and converged Cp for a transonic problem with

M_ = 0.8. The first and most important observation is that without a proper upwinding

discretization, all three components of NKS can fail. Fig. 6 shows the convergence history

in terms of the Cp curves. We note that it takes only 4 to 5 iterations for the Newton's

method to establish the neighborhood of the shock, but another 15 or so iterations to move

it to the exact location. Mach contours at the final solution are given in Fig. 6. While the

shock is setting up, the linear convergence of Newton's method is interrupted; see the left

panel of Fig. 5.

The results for coarse grids of varying size are summarized at the bottom part of Table 1.

The columns marked 0 × 0 and 2 × 3 reveal an interesting result for a mixed elliptic-hyperbolic

problem. The inclusion of a small coarse grid can reduce the total number of the linear
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Figure 7: The GMRES convergence history for the entire nonlinear iteration. The left figure
does not have a coarse space in the Schwarz preconditioner, the right figure contains a 7 x 8

coarse space. The number at the tail of each curve corresponds to the Newton iteration
number.

iterations, as well as the total execution time, by a factor of 30%. An optimally chosen

coarse grid size can lead to a greater savings. In Fig. 7, we overlay the convergence histories

of all the linear solutions in a complete nonlinear calculation. The history in the left panel

is without a coarse grid, and that in the right with a 7 × 8 coarse grid. The corresponding

execution time requirements can be found in Table 1.
The number of linear iterations and the total execution time can be reduced even further

if a proper overlap size, which is not usually very small, is used; see Table 2.

The best result, in terms of the total execution time, among all the test calculations is

obtained using a ILU(k), with k = 5, as the subproblems solver; see Table 3. It takes less

than 2½ minutes on the 32-processor IBM SP2 to set up and solve the Mach 0.8 nonlinear
system with more than a quarter of a million unknowns.

6.4 Parallel efficiency

The parallel efficiency of the present algorithm-software-hardware system is encouraging,

but it is useful to sort out in detail where efficiency is lost in going from 8 to 32 processors.

We display the parallel performance in Table 4, whose first three columns are excerpted
from the first and last columns of Table 3. The execution time data in the last column

of Table 3 is the best, or nearly the best, for each Mach number and parallel granularity

out of all of the parameter combinations considered, and is therefore the most meaningful

from which to draw parallel efficiency conclusions, though more flattering conclusions could

be drawn from runs that were performing more computation per node per communication

exchange.

After the number of processors, we list the number of linear GMRES iterations per 6

Newton steps in the upper (subsonic) half of the table, and per 19 Newton steps in the

lower (transonic) half of the table. Then we list the execution time, per 6 or 19 Newton

steps, respectively, these being the typical number of Newton steps required to fully solve
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the nonlinearproblem.Fig. 7 showsthat, for the transoniccase,the numberof GMRES
stepscanvary significantlyoverthe courseof a completesetof Newtoniterations,but the
meanand themedianareclose.

Considerthefollowingidealizedmodelfor theexecutiontime of thefixed-sizeproblem
on p processors. Let T(p) be the overall execution time, I(p) the number of linear iterations,

and C(p) the average cost per iteration. (We note that in GMRES, the average cost per
iteration is not independent of the number of iterations, because of the orthogonalization

overhead of later Krylov vectors is greater than earlier vectors, but we assume that the

dominant cost per iteration is the parallel Schwarz preconditioning.)

The overall parallel efficiency is defined as T/(p) = T(1) where T(p) = I(p). C(p).
p.T(p)'

Since we lack results for p = 1 on this problem of industrial size (512 x 512), we replace

all efficiencies by relative efficiencies with respect to the minimum configuration of Pl = 8.

overall relative parallel efficiency is therefore defined as r}(pl ---* p) = _. TheThe

numerical efficiency, a measure of the robustness of the preconditioning with respect to

increasing granularity, is _n_mer(Pl --'* P) = _ The implementation efficiencv is the
l(p) "

remaining factor, T/impt(pl _ p) = _ SO that Y(Pl _ P) = Yn_meT(P) × _impt(P).
p'C(p) '

The numerical efficiency is nearly 90% or above for all cases -- that is, the convergence

rate of the preconditioned linear system hardly degrades with increasing parallel granu-

larity. Approximately 13 GMRES steps are required for each subsonic Jacobian system

and approximately 23 GMRES steps for each transonic Jacobian system. This insensitivity

to granularity for a multilevel preconditioned operator is predicted by the Schwarz theory
for the subsonic case, and seems to be a fortunate consequence of the relatively confined

supersonic pocket of flow in the transonic case.

The implementation efficiency accounts for the most significant factor of overall efficiency
decline. The difference between the subsonic and transonic implementation efficiencies at

high granularity can be attributed to load imbalance, since the cells requiring upwinding are

concentrated into a small number of processors. (A more sophisticated dynamic mapping

algorithm could address this problem, but this is beyond present scope.) The subsonic

degradation of 76% in going from 4 to 32 nodes is identified as the chief remaining loss.

Redundant work and higher communication-to-computation ratio in the overlap regions,

which account for a steadily increasing fraction of all points in a fixed-size problem explain

the majority of this efficiency loss, which would disappear in a scaled problem with fixed-size

subdomains on each processor.

6.5 Sequential comparison with global ILU(k) preconditioners

The results of this section establish Schwarz preconditioning as numerically attractive and

reasonably parallel efficient, but it is natural to ask whether its utility is limited to dis-

tributed memory implementations of Newton-Krylov methods. To satisfy curiosity on this

point, we conclude with tests of Schwarz preconditioning against the popular global ILU(k),

k = 0,...5, family of preconditioners on a non-dedicated single:processor SUN SPARCsta-

tion with 512MB of memory. The results are summarized in Table 5. Because of the overlap

and the coarse solve, the Schwarz preconditioner needs more memory, even if all subdomain

problems are solved inexactly with ILU(5), than the other global ILU(k) preconditioners.

On the other hand, Schwarz outperforms all the global solvers in terms of total GMRES
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iteration countand thetotal executiontime. Part of the reason for the fine performance of

the Schwarz method is the much higher uni-processor Megaflop rating, which is presumably

related to much improved cache locality.

7 Conclusions

We have investigated computationaUy the effectiveness of Newton-Krylov-Schwarz methods

applied to the full potential equation of aerodynamics in some simplified situations in two

space dimensions. Best performance is obtained with modest overlap, a modest coarse grid

(one or two points per processor), modest-to-generous fill in the subdomain ILU precon-

ditioners, and uniformly loose convergence tolerances on the Krylov iterations within each

Newton step. For subsonic problems, the theoretically expected performance of the method

is essentially achieved. For the transonic case, the numerics are more encouraging than ex-

isting theory. Overall computation time is approximately six times greater for the transonic

than for the subsonic case, with current upwinding strategies. This can be factored into

a three-fold increase in the number of Newton steps in the transonic case, and a two-fold

increase in the number of Krylov iterations per Newton step.

Two strategies that should be employed on more nonlinearly taxing problems that we

have not considered here are mesh sequencing and pseudo-transient continuation. Their

purpose is to deliver an initial iterate for the steady-state form of Newton's method employed

in this paper that is already in the local domain of convergence on the finest grid. (Observe,

for instance, that the number of Newton steps required on M_ = 0.8 problem the 256 × 256

grid in Table 5, is roughly half that of the corresponding problem on the 512 × 512 grid in

Table 3. If the shock is correctly located on a (relatively) coarse grid, the plateau of Fig. 5

will be diminished on a finer grid that is initialized from the coarse grid solution.) Our rapid

turnaround times for two-dimensional problems artificially deemphasize the importance

of these strategies in large, complex nonlinear problems. In addition to globalizing the

Newton convergence, continuation strategies tend to improve the linear conditioning of the

intermediate problems, and are therefore potentially useful even in problems (such as ours)

for which simple initial guesses on the finest grid lead to convergence.

The broadest motivation for Newton-Krylov-Schwarz methods is the need to solve large-

scale problems with complex discretizations on distributed-memory systems with limited

memory per node. The matrix-free aspect of Newton permits shortcuts in Jacobian for-

mation storage while the domain decomposition aspect of Schwarz leads to load-balanced

data-to-memory maps that render communication sUbdominant in the preconditioning. The

amount of work done in the Krylov iteration can be adjusted to produce an overall method

with the best balance between the nested components.
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Table1: Varying the coarse grid size. Fine mesh 512 x 512, M_ = 0.1 and 0.8, sparse

LU for all subproblems, ovlp = 3h. "Newton" is the total number of Newton iterations.

"GMRES" is the total number of GMRES iterations occur in all of the Newton iterations.

"EXEC" is the execution time per processor in seconds for the entire calculation. "COMM"

is the total communication time per processor in seconds.

I Coarse Grid t 0×0 2×3 415 6×7 8× 9 10× 11np
i i

M_ = 0.1

Newton 6 6 6 6 6 6

GMRES 144 81 59 51

16

32

EXEC 136.79 125.30 104.18

COMM 2.14 2.10 1.95

53 5O

97.28 194.18] 94.63
2.39 3.28 4.24

Mflop/s 183.59 157.02 170.67 177.63 180.94 180.93
Newton 6 6 6 6 6 6

GMRES 167 92 66 54

EXEC 72.18 50.34 42.10

2.25 2.38 2.37

54 54

139.181 40.95 42.32
2.88 3.97 5.48COMM

Mflop/s 295.19 266.83 277.39 280.01 272.65 265.44

Newton 6 6 6 6 6 6

GMRES 227 105 72 57

EXEC 47.94 29.55 24.32

COMM 3.36 2.92 2.95

64 53

24.46 t23.431 26.59
4.13 4.51 7.00

Mflop/s 498.04 477.99 463.72 440.64 423.16 390.33

M_ = 0.8

Newton 20 19 19 20 19 19

16

32

GMRES 814 435 359

EXEC 757.45 548.52 490.64

COMM 10.97 11.63 12.16

350 307 311

498.08 1458.751 466.20
15.68 19.07 24.52

Mflop/s 158.70 158.47 162.20 163.44 163.00 161.15
Newton 19 19 20 20 19 19

GMRES 849 483 398 330

EXEC 432.78 327.77 306.25

COMM 11.69 12.90 14.14

349 320

291.14 1277061289.89
18.43 23.26 32.79

Mflop/s 233.50 224.48 219.17 215.38 210.78 204.68
Newton 19 19 19 19 20 20

GMRES 1142 636 454 385

333.79 244.36 207.54

16.09 18.43 19.40

EXEC

COMM

387 391

1200.21[ 215.46 227.84
25.26 34.46 47.68

Mflop/s 360.18 333.53 317.77 298.29 284.96 267.36
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Table2: Varying the overlapping size ovlp. Fine mesh 512 × 512, Moo = 0.1 and 0.8.

Exact LU for all subproblems. Coarse grid size 6 × 7. "Newton" is the total number of

Newton iterations. "GMRES" is the total number of GMRES iterations occur in all of the

Newton iterations. "EXEC" is the execution time per processor in seconds for the entire

calculation. "COMM" is the total communication time per processor in seconds.

np I I ovlp = lh ovlp = 2h ovlp = 3h ovlp = 4h ovlp = 5h
Met =0.1

Newton 6 6 6 6 6

GMRES 77 50 50

16

32

EXEC

COMM

Mflop/s

101.12

3.22

60 53

90.90 197:311 98.31 100.50
2.59 2.46 2.36 2.59

161.03 174.33 177.61 186.71 186.20

Newton 6 6 6 6 6

GMRES 82 49 49

EXEC 51.77

COMM 3.87

Mflop/s
Newton

GMRES

61 54

45.46 144.051 44.42 45.21
3.07 2.95 2.77 2.64

267.85 276.36 279.31 277.96 284.54

6 6 6 6 6

93 72 64 57

EXEC 30.35 28.28 26.75 26.31
3.58COMM 5.42 4.24 3.64

Mflop/s 387.34 421.17 441.80 452.00 460.17

Mo¢ = 0.8
Newton 19 19 20 20 20

GMRES 435 350 319 315

52

126.191
3.19

EXEC

COMM

365

527.50 1489.651 498.78 491.47 492.52
17.66 15.87 16.31 15.86 16.49

Mflop/s 145.19 160.11 163.11 170.98 172.56
Newton 19 19 20 20 19

GMRES 462 377 349 324 303

16 EXEC 315.39 294.34 292.02 280.61 ]278.211

COMM 22.74 19.22 18.70 17.67 17.10

Mflop/s 216.43 211.85 196.48 221.34 219.24

Newton 19 19 19 19 19

627 445 387 344GMRES

EXEC 251.96 207.12 199.90

COMM 38.08 27.51 24.12

Mflop/s

32

354

1188.991 189.44
23.02 22.31

276.02 301.20 298.73 313.36 320.93
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Table 3: Varying the level of ILU(k) fill-in. Fine mesh 512 × 512, Moo = 0.1 and

0.8. Coarse grid is 7 × 8. ovlp = 3h. "Newton" is the total number of Newton iterations.

"GMRES" is the total number of GMRES iterations occur in all of the Newton iterations.

"EXEC" is the execution time per processor in seconds for the entire calculation. "COMM"

is the total communication time per processor in seconds.

npllLU(k ) Ik=O k=l k=2 k=3 k=4 k=5
Moo = 0.1

Newton 6 6 6 6 6 6
GMRES 307 175 127 98 84 75

8 EXEC 171.46 110.07 88.26 76.11 74.28 171.741
m i

COMM 14.08 8.10 5.87 4.54 4.44 3.62

Mflop/s 119.80 113.63 109.46 102.36 96.00 95.43

Newton 6 6 6 6 6 6

GMRES 299 178 129 101 87 78

16 EXEC 97.82 64.14 51.19 43.34 40.81 140.071
I I

COMM 16.73 9.42 6.85 5.38 4.80 3.88

Mflop/s 208.04 201.60 195.17 188.34 183.56 179.69

Newton 6 6 6 6 6 6

GMRES 298 179 130 104

32

16

EXEC

COMM

Mflop/s

32

64.34

90 82

41.92 32.73 28.18 26.34 125.571
J I

19.26 11.44 8.14 6.63 5.70 4.91

324.76 321.72 318.07 308.78 304.06 305.19

M¢¢ = 0.8

Newton 19 20 18 19 19 19

GMRES 1638 911 622 547

EXEC

COMM

Mflop/s

462 424

863.15 523.33 382.27 364.11 335.47 1330.761
I /

77.30 42.64 29.13 25.90 21.62 19.81

127.49 125.37 124.04 123.70 122.13 119.90

Newton 19 20 20 19 19 19
GMRES 1693 924 707 531

EXEC

Mflop/s

526.40 316.98 255.54 209.27

COMM 90.88 49.9 38.32 28.55

220.22 213.73 215.42 214.21 210.64 208.59

460 423

195.96 1192.161
25.14 22.46

Newton 19 20 20 19 20 20

GMRES 1746 961 799 596

EXEC

557 501

361.81 217.29 187.37 150.59 150.29 1145.121
110.89 61.46 51.32 38.02 35.60 32.07
342.40 336.48 342.84 341.52 343.77 340.06

COMM

Mflop/s
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Table 4: Parallel efficiency. Fine mesh 512 × 512, M_ = 0.1 and 0.8. Coarse grid is

7 × 8. ovlp = 3h. "GMRES" and "EXEC" are the total number of GMRES iterations and

seconds of execution time per 6 Newton steps in the upper half of the table, and per 19

Newton steps in the lower half.

nPIGMRES EXEC I_ r/imvt 77
M_ = 0.1

8 75 71.1 - - -

16 78 40.1 0.961 0.931 0.895

32 82 25.6 0.915 0.766 0.701

Moo = 0.8

8 424 330.1 - - -

16 423 192.2 1.002 0.860 0.861

32 475 137.9 0.891 0.674 0.601

Table 5: Sequential comparison of the additive Schwarz preconditioner(OSM) with the

global ILU(k), k = 0,..., 5, preconditioners on a single processor Sun workstation. The fine
mesh is 256 x 256. The specifications of OSM are: 8 subdomains, 3h overlap, 7 x 8 coarse

grid, and ILU(5) as the subdomain solver. MEM is the total memory needed to store the

preconditioning matrix in Megabytes.

[OSM ILU(O) ILU(1) ILU(2 ) ILU(3) ILU(4) ILU(5)
Moo =0.1

Newton 6 6 6 6 6 6 6

48 509 280 195 148 119 103GMRES

EXEC

MEM(MB)

[496.29] 2754.54 1599.84 1178.55 970.72 817.42 771.04
24.22 10.58 10.57 13.65 16.83 20.12 22.87
32.12 6.68 6.48 6.19 6.04 5.85 5.40Mflop/s

M_ = 0.8

Newton 11 12 12 11 11 11 11
GMRES 136 1391 666 464 328 268 217

EXEC [1240.181 7766.42 3826.05 2848.73 2278.81 1761.89 1526.82

MEM(MB) 24.40 10.64 10.63 13.75 16.95 20.26 23.06
Mflop/s 36.57 6.53 6.48 6.20 5.63 5.99 5.79
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